Le réseau social professionnel s’adosse à un graph social neuronal pour aiguiser la pertinence de ses recommandations sans pour autant faire de compromis sur ses performances.
Fort de 830 millions de membres au dernier pointage, LinkedIn adosse le cœur de son réseau professionnel à un graph social combiné à un réseau de neurones artificiels. Une double technologie d’IA qui se classe dans le domaine des graph neural networks (GNN). L’enjeu ? Se baser sur les cercles relationnels de chaque utilisateur, de premier et de deuxième niveau, et sur leur historique de consultation pour leur faire des recommandations à la fois de contenus et de postes à pourvoir. Au fur et à mesure des nouvelles connexions activées et information consommée, le modèle de machine learning s’enrichit et affine la pertinence de ses conseils.
Problème : un GNN n’est pas capable de distinguer le bon grain de l’ivraie. Il tend à prendre en compte toutes les relations sans distinction. Ce qui, au final, engendre des limitations tant en termes de pertinence que de performance. Pour résoudre l’équation, LinkedIn a mis au point une méthode baptisée PASS (pour performance-adaptive sampling strategy).

Article complet par Antoine Crochet-Damais pour le Journal du Net : https://bit.ly/3OOCOBj
Catégories :Infos générales, Médias